If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12m^2-24=0
a = 12; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·12·(-24)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*12}=\frac{0-24\sqrt{2}}{24} =-\frac{24\sqrt{2}}{24} =-\sqrt{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*12}=\frac{0+24\sqrt{2}}{24} =\frac{24\sqrt{2}}{24} =\sqrt{2} $
| 1a−(−3.7)=6.11 | | 8x-9.1=38.9 | | 6x2+7x+68=0 | | 5(x+4)=20+7x | | 4x-14=-2x+28 | | 19x-3=17x+2 | | 4(x+5)=2(2x+10) | | 16x+8x=100 | | 5x–9=2x+3 | | 2(x-8)=4x-18 | | 4w+3=6w-20 | | 0.5(3x+6)=1.5–(x+2) | | 16x+2(4x)=100 | | Y=4/x+0.2-5x | | 6n+3=-4(1-4n) | | F(n)=-3n+7 | | P-2=-7+3p | | P-3=5p+2p-5 | | A+7=-3a+5 | | (0)+2y=4 | | 15=-(p-5) | | n^2-5/3n=5 | | -10=-3(x+3) | | 9m-6=3m | | 7/3=x+2/3 | | 6^(4x-2)=12 | | 3x-4=12+9x | | F=2c+32 | | (10+2x)(24+2x)=1176 | | 2(x^2+34x-468)=0 | | 19x+135=4x-30 | | 12x-28=8x+24 |